Pairing-Friendly Elliptic Curves with Small Security Loss by Cheon's Algorithm
نویسندگان
چکیده
Pairing based cryptography is a new public key cryptographic scheme. An elliptic curve suitable for pairing based cryptography is called a “pairing-friendly” elliptic curve. After Mitsunari, Sakai and Kasahara’s traitor tracing scheme and Boneh and Boyen’s short signature scheme, many protocols based on pairing-related problems such as the q-weak Diffie-Hellman problem have been proposed. In Eurocrypt 2006, Cheon proposed a new efficient algorithm to solve pairing-related problems and recently the complexity of Cheon’s algorithm has been improved by Kozaki, Kutsuma and Matsuo. Due to these two works, an influence of Cheon’s algorithm should be considered when we construct a suitable curves for the use of a protocol based on a pairing-related problem. Among known methods for constructing pairing-friendly elliptic curves, ones using cyclotomic polynomials such as the Brezing-Weng method and the Freeman-Scott-Teske method are affected by Cheon’s algorithm. In this paper, we study how to reduce a security loss of a cyclotomic family by Cheon’s algorithm. The proposed method constructs many pairing-friendly elliptic curves with small security loss by Cheon’s algorithm suitable for protocols based on pairing-related problems.
منابع مشابه
Pairing-friendly Elliptic Curves of Embedding Degree 1 and Applications to Cryptography
Recently, Wang et al. [1] proposed a new method for constructing pairingfriendly elliptic curves of embedding degree 1. Authors claim that this method significantly improves the efficiency of generating elliptic curves. In this paper, we give the arithmetic of pairing-friendly elliptic curves of embedding degree 1. We prove that conventional classification of pairings into Type 1, 2, 3 and 4 is...
متن کاملGenus 2 Hyperelliptic Curve Families with Explicit Jacobian Order Evaluation and Pairing-Friendly Constructions
The use of elliptic and hyperelliptic curves in cryptography relies on the ability to compute the Jacobian order of a given curve. Recently, Satoh proposed a probabilistic polynomial time algorithm to test whether the Jacobian – over a finite field Fq – of a hyperelliptic curve of the form Y 2 = X + aX + bX (with a, b ∈ Fq) has a large prime factor. His approach is to obtain candidates for the ...
متن کاملFamilies of Pairing-Friendly Elliptic Curves from a Polynomial Modification of the Dupont-Enge-Morain Method
A general method for constructing families of pairing-friendly elliptic curves is the Brezing-Weng method. In many cases, the Brezing-Weng method generates curves with discriminant D = 1 or 3 and restricts the form of r(x) to be a cyclotomic polynomial. However, since we desire a greater degree of randomness on curve parameters to maximize security, there have been studies to develop algorithms...
متن کاملConstructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures
Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user's public key based on the user's identity. However, computational require...
متن کاملOn Efficient Pairings on Elliptic Curves over Extension Fields
In implementation of elliptic curve cryptography, three kinds of finite fields have been widely studied, i.e. prime field, binary field and optimal extension field. In pairing-based cryptography, however, pairingfriendly curves are usually chosen among ordinary curves over prime fields and supersingular curves over extension fields with small characteristics. In this paper, we study pairings on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006